Daily Archives: July 16, 2012

Sonobe Unit Origami… #made4math

Every Monday, @druinok has been posting things that she has made for her math classroom on her blog. Tons of people have responded with really awesome ideas of things to make for their classroom. Though I consider myself really organized, I’m not good at the crafty type of things that people are posting. But the walls of my classroom this past year were a ridiculous expanse of nothingness, so one of my goals this summer is to brainstorm ways to make my classroom look less like a factory, which might require some #made4math creations.

At the Math Circle Summer Teacher Training Institute, I learned about a really cool, but simple, way to make awesome origami creations out of a single repeated unit. I want to string these together to create decorations, use them as balls for classroom activities, and just have them sitting around in the hopes that students will want to try to make them too! Here they are:

All of these structures (and many more) are made from this simple flappy foldy parallelogram with pockets called the Sonobe Unit:

If you Google “Sonobe Unit” you will find countless instructions on how to put these together. Here is one that I think is pretty good. Then, all you have to do is make a bunch of these and you can start putting them together in really cool ways. You can even invent your own variations of the unit, or how it is put together to get some really cool shapes.

Some tips:

  • Once you make the units, it’s really important to do the last step of folding them in half (so they should kind of look like W’s). This makes putting them together very intuitive.
  • In the picture above, the one on the left required 30 units and the one on the right required 12. The one in the middle is just a smaller version of the one on the right! If you used only 6 units you would get a cube (no need to fold in half, as mentioned above, for the cube).
  • It’s best to use three colors because of the way it is put together (so you can have three colors come together to make each one of those triangular peaks).
  • Once you start to experiment by putting it together, you should start to see how it works. Just slip one of the pointed ends of one unit into the small pocket on the middle section of another. On one of the peaks, each of the three units should connect to the middle section of the one to its right.
  • To make the creation with 12 units (the blue and green one on the right), just make sure that there are always 4 peaks around any given circle. To make the creation with 30 units, make sure that there are always 5 peaks around any given circle.