# Daily Archives: August 10, 2012

## My 3 Favorite Math Whiteboarding Modes

### GOAL: develop frameworks and modes appropriate for MATH specific Whiteboarding.

I did a ton of experiments this year with whiteboarding and a lot of brainstorming, but here are my three favorite modes of math whiteboarding that I tried (some writing copied from previous posts). A good whiteboarding mode for me can be applied to many different topics and takes advantage of everything whiteboarding has to offer: collaborative, interactive, promotes risk taking and visually stimulating.

_____________________________________________________________

## Guess and Check with a Partner

Students try to solve problems that take a certain amount of intuition or guesswork (like antiderivatives or factoring) by having one person write down a guess, and the other person check if it is correct.They would then keep doing this until they get a correct answer. After a certain number of problems solved, the two students switch roles. For example, above the students are looking for the antiderivative of $x^2$ – the guesser writes down $2x$ and the checker takes its derivative to see if that is correct. Since $2$ does not equal $x^2$, the guesser tries again. They continue this process until they finally get that $x^2$ back again. This mode is great for showing students that a great way to do math (at first) is to just try things and adjust their answer; it’s great for getting students to converse together about how to get a solution; and it’s great to get them in the habit of always checking their answers. I had a really hard time getting some students to follow the procedure for this one, but the ones that stuck to their roles got a lot out of it.

_____________________________________________________________

## Color Coding Problems

Before solving a problem, students rewrite it using different colors to help them understand its important parts. For example, above is a whiteboarding exercise I did with the Chain Rule. Students were in groups of threes – for each problem, one person had to rewrite the problem in different colors to indicate which was the outside and which was the inside function, the next person had to differentiate it still using the colors to point out where each part of the new expression came from, and then the last person had to rewrite the expression in a simplified form. This was perfect because the hardest parts of the chain rule are recognizing when you need, seeing inside vs. outside and then seeing where the parts of the new expression come from.

_____________________________________________________________

## The Mistake Game

Groups present solutions to semi-complicated/involved problems on whiteboards, but while presenting their solution, they purposely make a mistake (and not an silly arithmetic mistake like $3+4=8$ – a real hardcore-misconception-style mistake). Then, they present their work to the other students in the class, trying to sell their mistake as having been made for real. Other students ask thoughtful questions about the presenting group’s solution to try to help everyone find the mistake. This is always great with a quick class followup at the end collecting the most common mistakes. Check out the Guide to the Mistake Game from Kelly O’Shea, who introduced me to this game.

P.S. I’m realizing now that the example above actually isn’t a great example of a time to use this game… Some topics that it worked well for this year were graph sketching, solving for limits algebraically, using the quotient rule, implicit differentiation, related rates and using infinite limits in graphing exponential functions.

## MATH Whiteboarding

I make it standard practice of mine to steal as much as I can from science teachers out there. One of the best things I have borrowed from Physics Teachers has been whiteboarding, popularized by the rise of Modeling Instruction. I feel like lots of math teachers have these smaller whiteboards in their classroom, either individual ones or a good size for groupwork, but they maybe aren’t all that sure how to use them. Physics teachers have figured out a way to use them effectively that makes sense for them. From what I gather, most of these Physics teachers (at a basic level) have students whiteboard problems that they have previously worked out on homework assignments or worksheets and then present those to each other in “board meetings” as part of the Modeling process (sorry if I totally butchered that). It makes sense with Physics and other teachers can join in on the fun because they can see immediately how to use them.

But as great as stealing is,we need a whiteboarding framework for math, so that math teachers can see how to use them immediately and also join in on the fun. We need non-content specific techniques that teachers can use day to day so that whiteboards don’t just get added to that pile of crap in the back of the classroom. There are math teachers in the blogotwittersphere – like Anna (@borschtwithanna) and Timon (@MrPicc112) – who are working on this too, and I hope we can get more collaborators. I am going to devote the next few posts to math whiteboarding, but please join in on the fun if you have done something super cool that might be helpful for others (i.e. me).

but first, some observations from this past year when I started using whiteboards…

_______________________________

# Why Whiteboard?

WHITEBOARDS PROMOTE COLLABORATION. My whiteboards are about 2 x 3 feet, which gives plenty of room for at least 3-4 students to work together on a problem. There is something about working on the same surface (as opposed to working on the same problem in individual notebooks) that gets students talking way more. Whatever written is owned by the whole group, so there is more of a natural desire for everyone to explain to each other and help each other understand, and to healthily debate various aspects of problems.

STUDENTS ARE MORE LIKELY TO TAKE RISKS. The magic of a whiteboard marker is that it erases easily. It’s really not a big deal to make a mistake on the board because it is so easy to change. Students will try things that they never would with a pen and paper.

WHITEBOARDS ARE A NICE CHANGE OF ROUTINE. My students loved using whiteboards just because it was something different. They would work with different groups of students, we would sit in a different spot in the classroom, and the onus of the learning would be on them instead of on me. I don’t think that the idea of changing up the routine is trivial.

ALL TYPES OF LEARNERS ARE TARGETED. With different color markers, verbal exchanges between students, lots of time where students are being active and opportunities for creativity, almost every type of learner is engaged by whiteboarding.

_______________________________

# Issues to Work Out

STUDENTS DON’T HAVE ANYTHING TO REVIEW LATER. Lots of great learning happens during the whiteboarding, but for those that need to review later, they don’t have anything written in their notebooks. I tried taking pictures of the whiteboards and posting online, but I doubt that any students ever really looked at these. A solution that I heard from a colleague this summer was to give them 5 minutes at the end of class to copy down a problem that they would like to look at later. I like this solution, and would like to try it out this year.

SOMETIMES ONE STUDENT WILL TAKE OVER. I found that occasionally whiteboarding would turn into one student writing while a few others sat back and watched. This is a fallback with almost every type of group work. Though they felt a little forced, the best way I found to avoid this is to have specific roles, or structured ways for all students to get themselves involved. This is something I am going to try to document and work on

WHITEBOARDING TAKES A LOT MORE TIME. I’m sure some pros have managed to work whiteboarding into their curriculum without sacrificing pace, but I definitely did not. In fact, I sort of used it to slow things down. If you’re looking to power through material (like I was at times in my AP class), I don’t think whiteboarding is the solution, because its strengths are in allowing students to communicate, construct their own concepts, and spend more time exploring a concepts deeply.

IT IS TOUGH TO GRADE WORK DONE ON WHITEBOARDS. Some teachers have expressed this concern to me – they aren’t handing anything in and the work is done by everyone, which makes it difficult to grade. My solution? Don’t grade it. Not everything that happens in the classroom needs to be graded.

_______________________________

# Getting the Materials

GETTING THE WHITEBOARDS: If you can, I think the easiest way to get whiteboards is to have your department order some, but you can also easily just head down to home depot, buy a huge piece of whiteboard and have them cut it for you. @borschtwithanna describes how she did this here, and @fnoschese describes a few different ways to get them in his classic post describing whiteboards here.

OTHER MATERIALS NEEDED: I found that for my whiteboards, the normal erasers just don’t work well. @mgolding suggests using black socks as erasers (white socks get gross) and @misscalcul8 suggests putting the markers right in the socks as an easy way to distribute the markers and a way to avoid students fighting over which color marker they get. With the whole class using markers instead of just you, I also found that you need tons of markers. Luckily, I don’t have a quota at my school, so I just always go nab some more from the supply closet, but @kellyoshea has a pretty good solution to this problem with refillable markers and marker buckets for each group.

_______________________________

# Student Feedback

Want to know what students think? I collect student feedback as often as possible, so I went into my most recent document and pulled out every comment having to do with whiteboards. Interestingly, most of the negative comments came from my AP class and very few negative comments came from my non-AP class. (emphasis below is mine)

I LOVE when we use the white boards because I get to see how my peers think and compare their thought process to mine. And then when we discuss it with the class its even more helpful. There is so much opportunity to lean with this exercise.

I really liked graph sketching on whiteboards, and then hiding a mistake in it. It was helpful because it helped me remember what common mistakes I should avoid.

You’re doing a great job with the white boards, it give us a chance to work together which is fun and helpful at the same time, we can talk a little but we generally do the work and its more of a competition to me instead of just work so that is an extra motivation

For me, graph sketching on whiteboards and working in groups on packets isn’t really helpful and it’s not your fault. Some kids in my class lack motivation and manners and a desire to improve; so I guess it’s really frustrating to work with them.

One learning activity I found particularly helpful is the activity in which we drew derivatives on whiteboards. I tend to find drawing graphs from functions to be difficult at times, especially when we are focusing on derivatives and so this activity helped me a lot. It allowed me to see common mistakes and different ways of drawing functions and the discussions we had while sketching graphs allowed me to realize my mistakes.

graph sketching on whiteboards [is helpful]. Since it was interactive I learnt much more

I really like graphing sketching on the whiteboards. I enjoy working in groups, then looking at what everyone did. It’s a good way of practice, and we learn from our mistakes.

when we use a white in groups [isn’t helpful] because i get confused when were than one wants to solve it on the board rather than if we work in groups and each one with his/her own paper.

Drawing derivatives on whiteboards [isn’t helpful], because I find that the diffusion of responsibility between the team members decreases their productivity in class.

I think the most helpful class activity that has been very helpful is sketching on the white boards leaving mistakes for others to pick, in this case we can learn where are the possible mistakes occurring and allow you to avoid them when dealing with your own.

I found that [it was helpful] when we graphed derivatives on white boards and slowly drilled each step aswell as common mistakes to avoid. It was perfect to clear any doubts both visually and algebraicly.

Drawing derivatives on white boards, because my classmates and I can discuss different methods of solving a question.

I like using the white boards because it’s nice when we all share our work and see everyone else’s work and compare it to ours and then we look at the mistake and fix it together.

The best activities which I felt that helped me a lot is the group work like the games and the white boards

I think that when we do goup work and work on answering a question on the white-board I feel that one student work and the rest just watch him working which is not as beneficial to everyone.